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Goal:  Simulate Conically Scanning Millimeter-Wave Imaging Radiometer (CoSMIR) high-
frequency microwave channels for surface snowfall events during GCPEx. 
 

Tools:  GCPEx airborne and surface observations as radiative transfer (RT) model input. 
 

Focus:  Simulated microwave brightness temperature sensitivities to key RT input parameters. 

I. Introduction 

II. Case Study:  30-31 January 2012 

The 20 UTC 30 Jan - 04 UTC 31 Jan2012 Global 
Precipitation Measurement Cold season Precipitation 
Experiment (GCPEx) snowfall event was chosen for initial 
testing purposes.  Highlights of this snowfall event include: 
 
•  Synoptic snowfall event driven by upper level forcing. 
•  Cloud top heights ~6-8 km 
•  Light to moderate snowfall  
•  2-3 cm accumulated surface snowfall at CARE site 
•  Extensive ground-based observations at numerous sites 
•  DC-8 overflights (APR-2 radar + CoSMIR) 
•  Citation in-cloud spiral over CARE site (2315-2343 UTC) 
•  Observations used to create RT input (see below)  
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250 m LWC

Cloud Liquid Water 

Cloud liquid water profiles from King 
probe on the Citation are averaged into 
250 m bins. 

RT Simulations performed using two 
different RT models: 
 
1.  Successive Order of Interaction 

(SOI; Heidinger et al. 2006; O’dell 
et al. 2006) 

 
2.  MWRT (Liu 1998) 

III. RT Results:  Sensitivity to Cloud Liquid Water, Ice Habit, PSD  
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IV. Future Work 

Fig. 1:  Water vapor-only (blue), water 
vapor + observed cloud liquid water 
(CLW; red), and water vapor + CLW + ice 
microphysics (green) at 0o (diamond) and 
53.6o viewing angle.   Sector snowflake 
model is used for the ice microphysics 
simulation. 

Fig. 1 

Fig. 2: Water vapor-only (blue), water 
vapor + observed CLW (red), and water 
vapor + CLW + sector snowflake ice 
microphysics (green) at 53.6o viewing 
angle. Different ice models are also 
indicated in the legend by other colors/
symbols to illustrate ice habit sensitivity. 

Fig. 2 

Frozen Hydrometeors 

Frozen hydrometeor particle size 
distribution (PSD) profiles constructed 
from various probes are averaged into 
250 m bins. Modeled snow water 
content is calculated by using mass-
diameter relationships for each respective 
ice model from the Liu (2008) database 
and integrating over the observed PSD.  

Water Vapor 

Summary of RT sensitivity tests (Figs. 1-3) 
 

•  165.5 GHz TB increases significantly when ice initially included (Fig. 1), but 
different ice models can significantly depress TB (Fig. 2). 

•  89 and 165.5 GHz responsive to CLW and ice habit, but effects of CLW 
inflation modulated differently by respective ice habits (Fig. 3). 

•  Some ice models produce high snow water content when integrated over 
observed PSD (Section II), producing excessive scattering (Fig. 2). 

•  183.3+/-6 responsive to ice habit for this case study profile, but less than 
other scattering sensitive channels. 
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Vertically-pointing X-band radar reflectivity for last segment of snowfall event. 
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Fig. 3: TB changes due to changes in CLW.  CLW profile shown in Section II is altered by 
percentages indicated on abscissa to simulate environments with more/less CLW than 
observed CLW on 30 Jan 2012.   

Fig. 3 

Fig. 4a: Observed (red), Field et al (2005; dash), and Field et al. (2007; solid) PSD’s for 
temperatures between -5 and -10 C.   Fig 4b: Same as Fig. 4a, but for temperatures between 
-10 and -15 C.   Fig. 4c:  TB simulations using SOI model + observed PSD (blue), SOI + Field 
et al. (2005) PSD (red), SOI + Field et al. (2007) PSD (dark green), MWRT + Gunn and 
Marshall (1958) PSD (gray), and MWRT + Sekhon and Srivastava (1970) PSD (light green). 

Fig. 4a Fig. 4b 

Fig. 4c 

Summary of RT sensitivity tests (Fig. 4) 
 

•  Temperature-dependent Field et al. (2005, 2007) PSD parameterizations 
produce systematically higher (lower) particle concentrations for Dmax < 
1 mm (Dmax > 2 mm) compared to observed PSDs.  However, simulated 
TB’s not very sensitive to these PSD differences in scattering-sensitive 
channels (~ 2-3 K at 165.5 GHz).  

 

•  Much larger TB differences exist between SOI and MWRT simulations.  
MWRT+Sekhon-Srivastava (1970;SS) produces extremely low TB 
depressions compared to other RT Model/PSD combinations.  MWRT
+Gunn-Marshall (1958;GM) also much lower at 165.5 and 183.3+/-6. 

 

•  NOTE:  6-bullet rosette ice model used in all Fig. 4 simulations. 
 

•  Water-vapor only simulations are very similar between SOI and MWRT 
(not shown; both use similar water vapor absorption models), but 
microphysics induces differences depending on RT Model and PSD.    

 

•  Lingering Questions: 

•  Can temp-dependent Field et al. PSD parameterizations be 
universally applied without inducing significant biases? 

 

•  Differences in RT solvers?  Need to apply SS and GM PSD’s to 
compare SOI and MWRT using full microphysics. 

•  How to effectively simulate 183.3+/-XX channels (scattering 
properties and simulation methodology)? 

 

•  Further sensitivity testing for 30 Jan 2012 case (surface emissivity, over-water, etc.). 

•  Simulate other GCPEx cases using in-situ microphysics observation (e.g., 27 Jan 
2012 case – elevated supercooled water layer reduces scattering?). 

 

•  Spatially expand simulations using APR-2 microphysics retrievals?  Compare 
directly to CoSMIR observations? 

 

•  Link airborne observations to surface observation (significant biases from ignoring 
microphysics in lowest few bins?). 

•  Do scattering models work when used with in-situ microphysics + CoSMIR + 
APR-2 simulations? 

PSD-averaged scattering properties are 
obtained by integrating single-scattering 
properties from Liu (2008) ice model 
database over the observed PSD’s. 


